

Gas Connection Concept Design Report

Thurrock Flexible Generation Plant

Application document number A7.4

APFP Regulations reference 5(2)(q)

Document Title:

CONCEPTUAL DESIGN REPORT

12" (DN300) PIPELINE

Document No:

E-18110200-M-0501-001

Project Title:

THURROCK POWER – PIPELINE CONCEPTUAL DESIGN REPORT

C Statera Energy	CONCEPTUAL DESIGN REPORT – 12" PIPELINE E-18110200-M-0501-001_D	
------------------	--	--

Record of Issue:

REVISION	DATE	DESCRIPTION	BY	CHECKED	APPROVED
А	21 NOV 2018	FOR REVIEW	BT/DB	ВТ	DB
В	05 APR 2019	FINAL	DB	SS	DB
С	30 SEP 2019	FOR REVIEW	ВТ	RW	DB
D	21 JAN 2020	FOR REVIEW	ВТ	SC	DB

Change Control:

REVISION	CHANGES TO DOCUMENT
В	Section 5.1.2 and 5.1.7 updated.
С	Figure 1, Table 4 and Table 5 updated for adjusted route options. Length of pipeline adjusted where referenced in paragraphs.
D	Table 4 crossing methods updated.

Distribution List:

ORGANISATION	CONTACT	COPIES

Thurrock Power	Page 2 of 23
----------------	--------------

Contents:

1	INT	ROD		.5
2	DES	SIGN	GENERAL	.7
	2.1	Leg	ISLATION	.7
	2.2	Des	IGN CODES AND SPECIFICATIONS	.7
	2.3	Des	IGN PARAMETERS	.7
3	PIP	ELIN	E DESIGN	.9
	3.1	Pipe	MATERIAL SELECTION AND WALL THICKNESS	.9
	3.2	Pipe	LINE ROUTING	10
	3.3	Buil	DING PROXIMITY CALCULATIONS	11
	3.4	Buil	DING PROXIMITY SURVEY	11
	3.5	Рор	ULATION DENSITY CALCULATIONS	1
	3.6	Рор	ULATION DENSITY SURVEY	13
	3.7	Sen	SITIVE DEVELOPMENT SURVEY	13
	3.8	Spe	CIAL CROSSINGS	13
	3.9	ΜΑΤ	erial Take Off (MTO)1	14
	3.9.	1	Pipeline material	14
	3.9.	2	Line bends	14
	3.9.	3	Pipeline coatings	15
	3.10	Рив	LIC UTILITY LIAISON	15
	3.11	Сат	HODIC PROTECTION	6
4	HE	ALTH	, SAFETY AND THE ENVIRONMENT1	17
	4.1	SAF	ETY STATEMENT1	17
	4.2	Εnv	IRONMENTAL ISSUES	17
	4.3	Des	IGNER RISK REGISTER	8
5	CO	NSTR	RUCTION	9
	5.1	Pipe	LINE CONSTRUCTION1	19
	5.1.	1	General	19
	5.1.	2	Working width	19
	5.1.	3	Depth of cover	19
	5.1.	4	Field bending	19
	5.1.	5	Protection of existing services	20
	5.1.	6	Welding	20
	5.1.	5 6	Welding	20 20

APPENDIX A – REFERENCE DOCUMENTS23			
5.2	RECORDS AND DOCUMENTATION	1	
5.1.8	Commissioning2	1	
5.1.7	Pipeline hydrotesting / Dewatering2	0	

1 INTRODUCTION

Thurrock Power Ltd proposes to develop a flexible generation plant on land north of Tilbury Substation in Thurrock. The flexible generation plant will provide up to 600 megawatts (MW) of electrical generation together with up to 150 MW of battery storage capacity.

This report describes the Conceptual Design Study undertaken for the 12" (DN300) pipeline that conveys high pressure natural gas from a Minimum Offtake Connection off National Grid's (NG) National Transmission System (NTS) to the power station gas receiving compound.

The pipeline route is approximately 2.1km in length with preliminary start and end point coordinates of E:568046, N:177356 and E:566434, N:176906 and includes a number of road, ditch and track crossings (see Figure 1 for overall pipe route).

The purpose of this report is to identify a constructible route for the pipeline and carry out sufficient design work to enable an order for line pipe to be placed and for long-lead items (LLIs) to be identified ready for the commencement of the detailed design phase.

The Environmental Statement report considers the environmental impact along the conceptual design pipeline route.

Figure 1 - Overall Pipe Route

This report should be read in conjunction with the following documents (see Appendix A):

E-18110200-M-0200-001	Overall Route Plan 300 Dia. Pipeline
E-18110200-M-0200-002	Pipeline Alignment Drawing 300 Dia. Pipeline Sheet 1 of 3
E-18110200-M-0200-003	Pipeline Alignment Drawing 300 Dia. Pipeline Sheet 2 of 3
E-18110200-M-0200-004	Pipeline Alignment Drawing 300 Dia. Pipeline Sheet 3 of 3
E-18110200-C-0209-001	General Arrangement Typical Crossing Ditch or Stream
E-18110200-C-0209-002	General Arrangement Typical Crossing Minor Road and Track
E-18110200-C-0209-003	General Arrangement Typical Pipeline Right of Way
E-18110200-M-0300-001	Wall Thickness Calculation Proximity Pipe
E-18110200-M-0300-002	Wall Thickness Calculation Line Pipe

2 DESIGN GENERAL

2.1 Legislation

The Preliminary Design of the pipeline has taken into consideration the relevant health and safety legislations and other relevant legislations where applicable, shown below:

- Gas Act 1986 (as amended 1995)
- The Pipelines Safety Regulations 1996
- The Construction (Design and Management) Regulations 2015
- Health and Safety at Work etc. Act 1974
- The Electricity at Work Regulations 1989
- The Pressure Systems Safety Regulations (PSSR) 2000
- The Dangerous Substances and Explosive Atmospheres Regulations (DSEAR) 2002
- The Public Gas Transporter Pipe-line Works (Environmental Impact Assessment) Regulations 1999
- Control of Substances Hazardous to Health Regulations 2002

2.2 Design codes and specifications

The pipeline, including special crossings, will be designed, constructed and tested to comply with the Institution of Gas Engineers and Managers publication, IGEM/TD/1 Edition 5, 2008 - 'Steel pipelines and associated installations for high pressure gas transmission' (plus supplements).

Throughout this document when IGEM/TD/1 is referred to it can be assumed that this is Edition 5 unless noted otherwise.

2.3 **Design parameters**

The pipeline design parameters are summarised in Table 1 and Table 2.

The designs have optimised pipe sizes to accommodate the worst-case simultaneous flow and pressure conditions.

Table 1 - 300NB Pipeline Design Parameters

PARAMETER	VALUE
Maximum operating pressure (MOP)	70.0 barg
Safe operating limit (SOL)	77 barg
Minimum operating pressure	38 barg
Design pressure	77 barg
Maximum flow	155,520 scmh
Temperature range	0°C to 50 °C
Design life	40 years

Table 2 - Cycling Pressure

PRESSURE RANGE (barg)	DIFFERENTIAL PRESSURE (barg)	NO. CYCLES
70 – 0	70	5
70 – 55	15	1000
70 – 64	6	8000
70 – 65	5	6000

HOLD – NG to provide historic operating data of the No. 18 feeder between Tilbury Thames North and Horndon.

3 PIPELINE DESIGN

3.1 **Pipe material selection and wall thickness**

It should be noted that although this section of the report deals with identifying those sections of the route that require line pipe (Type R areas) and proximity pipe (Type S areas), It is recommended that the entire route be installed as Type S (design factor 0.3). This is due to several factors not limited to:

- A relatively short pipe route
- Small diameter pipeline
- Continuity of materials for construction, weld procedures / qualifications etc.
- Proximity pipe is required for over 50% pipe route
- Future proofs the design for encroaching proximity, population density, sensitive development issues
- Low differential for material / construction costs for line and proximity pipe

This approach should be confirmed by Statera during detail design.

The pipe considered for this project, detailed in Table 3, has been selected to comply with IGEM/TD/1.

PARAMETER	VALUE		
Pipeline outside diameter		323.90 mm	
	Material grade	API 5L X52 PSL2	
сперре	Wall thickness	6.35 mm	Sch. 20
Desideritation	Material grade	API 5L X52 PSL2	
	Wall thickness	12.7 mm	Sch. XS

Using the formula in IGEM/TD/1 section 6.4, calculations have been carried out (see calculations E-18110200-M-0300-001 & 002) for the above pipes to verify that their specifications are fit for purpose, based on the following assumptions:

a. The pipe will be 300NB (323.9mm outside diameter)

- b. Pipeline design pressure is 77.0 barg
- c. Pressure cycles are within the acceptance criteria set out in IGEM/TD/1section 6.5.3 (for a 70.0 barg MOP pipeline)
- d. A manufacturer's under tolerance of minus 12.5% has been applied to the pipe wall thickness
- e. No allowance for construction damage has been included for in the calculation
- f. The resultant design factors used in the calculations are in accordance with IGEM/TD/1
- g. Material grades and yield strength have been generally in accordance with API 5L / ISO 3183 (PSL2) Grade X52

Both combinations of wall thickness and material grade conform to the requirements of IGEM/TD/1.

IGEM/TD/1 clause 6.7.4 for Type R areas gives a maximum design factor, 'f', of 0.72. The calculated resultant factor, 'f', for the selected line pipe is 0.5 and therefore in accordance with the requirements of IGE/TD/1.

IGEM/TD/1 clause 6.7.5 for Type S areas gives a maximum design factor, 'f', of 0.3. The calculated resultant factor, 'f', for the selected proximity pipe is 0.25 therefore in accordance with the requirements of IGE/TD/1.

Therefore, the selected line pipe meets the requirements for operation in Type R areas and proximity pipe meets the requirements for operation in Type S areas and therefore is suitable.

3.2 **Pipeline routing**

The pipeline route corridor was initially detailed by RPS in the Preliminary Environmental Impact Report which led to the development of the conceptual pipeline route.

The route drawings referenced in Appendix A of this report show the conceptual design pipeline route which has been developed from the route provided by RPS / Statera. The pipeline route has been reviewed with respect to constructability, legislative, safety, environment and engineering.

During the preparation of these drawings, information has been gathered from other utility companies and where appropriate has been included on the drawings in order to determine the number of special crossings and finalise the amount of proximity pipe required.

During the next phase of the project, any 'fine tuning' of the pipeline route as a result of land owner negotiations will be incorporated into the pipeline design and the maps updated accordingly.

3.3 Building proximity calculations

STATERA ENERGY

The minimum building proximity distance (BPD) for both 'line pipe' and 'proximity pipe' has been extrapolated from Figures 5 and 6 of IGEM/TD/1 and verified using Equation 1 and Equation 2. They are based on the pipeline being 323.9mm [outside] diameter, having a MOP of 70.0 barg and wall thickness \geq 11.91mm.

Equation 1 - Minimum building proximity distance (line pipe)

Minimum
$$BPD_{LP} = (C_1 \times MOP) + C_2$$

= (0.37 × 70.0) + 10.48
= 32.88m

Therefore from Equation 1, the BPD for line pipe is 33 metres (rounded to the nearest metre).

Equation 2 - Minimum building proximity distance (proximity pipe)

Minimum
$$BPD_{PP} = (C_1 \times MOP) + C_2$$

= $(0 \times 70.0) + 3$
= $3.0m$

Therefore from Equation 2, the BPD for proximity pipe is 3 metres.

3.4 Building proximity survey

Using the conceptual design pipeline route (document E-18110200-M-0201-001) as a basis, a check for any buildings within the BPD was made. A circle with a radius of 33m (BPD) was traversed, using AutoCAD, along the pipeline route. Any buildings inside the circle – either partially or wholly – were classed as being inside the BPD. Where buildings fall within one BPD of the pipe route, the pipeline shall be constructed using proximity pipe.

For the detail design a site review of buildings within the BPD circle of the pipeline should be undertaken to assess if they are habitable and where dwellings were found within the 1 BPD the route should be examined to check whether enough proximity pipe has been allowed for.

3.5 **Population density calculations**

To comply with IGEM/TD/1, a population density study must be carried out on a pipeline route to identify Type R and Type S areas in order to select the appropriate wall thickness of the pipeline.

In order to determine the precise boundary between Type R and Type S areas, the population density has to be calculated within circles whose diameter is 8 times the BPD. By considering such

circles in sequence along the pipeline route, the centre of the circle within which the population density first falls below the required number of dwellings (2.5 persons per hectare) is determined as the boundary.

In accordance with IGEM/TD/1 the allowable number of dwellings for a Type R Type area for the pipeline is as per Equation 3.

Equation 3 - Population density

From Equation 1; $BPD_{LP} = 33m$

Diameter for 'rolling circle' population density, 8BPD; $8 \times 33 = 264m$

Area of the circle;

$$A_c = \pi r^2$$

$$A_c = \pi \left(\frac{264}{2}\right)^2$$

$$A_c = 54,739.11m^2$$

$$A_c = 5.47 \ hectares$$

As per IGEM/TD/1 section 6.7.1.1, allowable number of persons per hectare is 2.5. Therefore, allowable number of persons within the rolling circle, C_P ;

$$C_P = A_c 2.5$$

 $C_P = 5.47(2.5)$
 $C_P = 13.68$

Allowable number of persons per circle, C_P , has been rounded down to 13 persons for Type R area.

As per IGEM/TD/1 section 6.7.2.3, the occupancy of typical houses has been assumed to be 3 persons per dwelling. Therefore, allowable number of dwellings per circle, C_D ;

$$C_D = \frac{C_P}{3}$$
$$C_D = \frac{13}{3}$$
$$C_D = 4.3$$

Allowable number of dwellings per circle C_D , has been rounded down to 4 dwellings for Type R area.

Thurrock Power

3.6 **Population density survey**

A population density study has been undertaken to assess the area classification as defined by IGEM/TD/1 section 6.7. This is a check on the areas identified as requiring proximity pipe. The method used for calculating the allowable population density figure is the 'rolling circle' method, as described in section 3.4, using a circle of diameter 264m. The technique used to check for any population density infringements is the same as for BPD infringements.

An overview of the amount of proximity pipe for population density is shown on pipeline alignment drawings E-18110200-M-0201-002/003/004, however there is a location that requires clarification due to the limited information of the maps to indicate its purpose, as follows:

<u>Drawing E-18110200-M-0200-002</u>
 North east of the Poultry Farm, there is a cluster of buildings where it is not known whether or not they are occupied. It has been assumed, at this conceptual stage, that they are unoccupied.

3.7 Sensitive development survey

There are no 'sensitive' areas within the proximity of the pipeline that require further investigation at this stage.

Sensitive developments will need to be re-examined as part of the detailed design project phase.

3.8 Special crossings

All special crossings (road, track and ditches) are to be designed in accordance with IGEM/TD/1. The 1:1,250 pipeline alignment drawings (documents E-18110200-M-0200-002/003/004) show general compliance with the requirements.

A pipeline crossing schedule is included in Table 4.

Environmental constraints will be detailed within the Environmental Statement (ES). At the detailed design stage, the crossing methods will be considered in detail, including a review of all site works currently in progress.

During detail design all crossings will be designed in accordance with the requirements of IGEM/TD/1 section 6.10 and shall consider the effects of 'additional loads' (IGEM/TD/1, section 6.5).

 Table 4 - Pipeline crossings schedule
 Image: Comparison of the schedule

	CROSSING D	ETAILS		APPROXIMATE LOCATION (O.S. COORDINATES)			
	ТҮРЕ	TAG	CROSSING METHOD	EASTING	NORTHING		
	Road	RDX-1	Open Cut	567630	177396		
	Road	RDX-2	Open Cut	567529	177415		
	Ditch	DX-1	HDD	567200	177352		
Proposed route	Ditch	DX-2	HDD	566998	177404		
	Track	TX-1	Open Cut	566825	177270		
	Ditch	DX-3	HDD	566821	177267		
	Ditch	DX-4	HDD	566473	176998		
Route option A	Ditch	DX-2A	HDD	567007	177485		
	Track	TX-1A	Open Cut	566784	177450		
	Ditch	DX-3A	HDD	566779	177446		
	Ditch	DX-4A	HDD	566568	177272		

3.9 Material Take Off (MTO)

3.9.1 Pipeline material

The overall length of the proposed pipeline, measured from document E-18110200-M-0200-001, is approximately 2.14km. At this stage, it is assumed that approximately 1.09km of the pipeline will be line pipe (measured from document E-18110200-M-0200-002/003/004).

Pipe material for this project has been selected to comply with IGEM/TD/1.

3.9.2 Line bends

As per section 5.1.3, cold bends can be used subject to restrictions.

An assessment of the number of fabricated bends required for larger changes in direction and special crossings has been made during the conceptual design period as shown in Table 5.

DESCRIPTION	QUANTITY
12" NB, 3D Radius, 45° bend, ASTM A860 WPHY 60 to suit SCH80 X52 pipe	4
12" NB, 3D Radius, 90° bend, ASTM A860 WPHY 60 to suit SCH80 X52 pipe	10

Thurrock Power	Page 14 of 23
	-

The bend quantities above are indicative only. There may be a requirement for additional bends including 22.5° and 11.25° fabricated bends. All bends should have a minimum bend radius of 3D (3 x pipe diameters).

There are a number of bends that could be considered "sharp" bends where 90° bends are currently proposed. For changes of direction of this nature anchor blocks can be considered at the bend. This should be considered further during the detail design flexibility analysis. An alternative option would be to replace the 90 bends with 2 x 45 bends some distance apart.

3.9.3 Pipeline coatings

The pipeline materials should be coated in accordance with section 10.3 of IGEM/TD/1.

Wherever possible, coatings for pipes and fittings should be factory-applied. Materials used for coating on site shall be compatible with any factory applied coatings.

In the absence of project specific standards at this stage it can be assumed that the following NG company standards apply:

External

T/SP/CW/5 - Specification for Field Applied External Coatings for Buried Pipework and Systems T/SP/CW/6 - Technical Specification for the External Protection of Steel Line Pipe and Fittings Using Fusion Bonded Powder and Associated Coating Systems: Parts 1 and 2

Internal

T/SP/CM/1 Specification for Internal Coating Operations for Steel Line Pipe and Fittings

3.10 **Public utility liaison**

Details of public utilities available at the time of the conceptual design have been overlaid onto the pipeline alignment drawings including ground penetrative radar (GPR) survey of Station Road (RDX-2).

Full details of all utilities along the pipeline route will be required during detail design and any additional crossing of a third-party utility should be added to the crossing schedule and considered in detail.

3.11 Cathodic protection

The pipeline will be protected from corrosion by a combination of pipe coating and cathodic protection (CP) in accordance with industry standards and international codes and standards.

Site surveys including soil resistivity readings along the pipeline route will be carried out during the detail design phase. It is envisaged that there will be a ground bed and CP transformer/rectifier unit at either of the sites at the end of the pipeline, most likely at the power station end. An electricity supply for a CP transformer/rectifier unit will be required.

There are sections of the pipeline route that run parallel with overhead high voltage power lines that could present a risk of AC corrosion as detailed in section 10.4.2 of IGEM/TD/1. The route has been selected to give the best possible separation from the OHLs however it is recommended to install mitigation measures for entire route as this is relatively low cost. Mitigation measures are detailed in section 10.4.3 of IGEM/TD1, testing can be completed post installation using the test posts which will confirm whether the mitigation measures are required to be connected.

4 HEALTH, SAFETY AND THE ENVIRONMENT

4.1 Safety statement

Health and Safety issues will be addressed throughout design and construction activities. The project will be executed in accordance with current health and safety legislation, including the Construction (Design and Management) Regulations 2015 and the Health and Safety at Work etc. Act 1974.

Appointments are to be made at the detailed design phase with respect to health, safety and the environment.

4.2 Environmental issues

The impact of the project on the environment has been, and will continue to be, considered at all stages throughout the design and engineering activities. Adequate provisions will be made to prevent (where possible) or otherwise, minimise potentially harmful effects identified at any stage of the project development.

The preliminary design aims to minimise the effects on the environment along the entire pipe route and at the installations at the start and end points of the pipeline.

Following desk and field studies to identify relevant landscape issues and the constraints that will be imposed by the natural landscape, the pipeline route was carefully selected to minimise any adverse environmental effects. The route chosen has, wherever practicable, been selected to avoid damage to landscape features, such as woodlands and hedgerows. On completion of the pipeline construction, the working width will be reinstated to replace any features affected. At road crossings and field boundaries, any hedges which require removal, will be reinstated.

The Environmental Impact Assessment (EIA) supporting the project will be undertaken by RPS to provide the necessary information for interested parties to objectively assess the project in relation to likely effects on the environment.

The EIA will be a representation of the collation and culmination of a series of studies and surveys and discussions to:

- identify the nature of the existing environment;
- identify the impacts of the proposals;
- predict the likely magnitude and significance of those impacts on the environment; and

allow the formulation of mitigation measures.

It will assist Statera and NG in ensuring that the construction and operation of the pipeline is carried out in a manner which will minimise effect on the environment.

The EIA will form only part of the environmental assessment process. Environmental assessments will continue throughout the detail design, construction and operation of the pipeline to ensure that the environment is appropriately protected.

4.3 **Designer risk register**

STATERA ENERGY

The Designer Risk Register can be found in *[HOLD – currently not included at this stage]* It identifies various hazards that might affect the route of the pipeline. By its nature the Preliminary Design Risk Register identifies generic risks and will be expanded at the Detailed Design stage.

5 CONSTRUCTION

5.1 **Pipeline construction**

5.1.1 General

The pipeline will be constructed in compliance with IGEM/TD/1 and current legislation.

5.1.2 Working width

In all circumstances, the limits of the working width shall be marked clearly. Temporary fencing should be provided throughout the period of construction along each side of the working width, to protect landscape and habitat features from disturbance and also to close off the working width at all points of access from public roads. This should be stock-proof where stock is kept on adjoining land.

GA Drawing E-18110200-C-0209-003 provides typical pipeline right of way details.

5.1.3 Depth of cover

The minimum depth of cover over a pipeline shall be in accordance with Table 6. The depth of cover shall be measured from the lowest ground surface level to the top of the pipe, including coatings and attachments.

Table 6 -	Minimum	depth c	of cover
1 4010 0		aopure	

LOCATION	MINIMUM DEPTH OF COVER (m)
Rural	1.2
Minor Road & Tracks (1)	2.0
Water courses (ditch or stream)	1.7m (2)

Note 1: Measured from the true clean bottom of adjacent drainage ditches. Note 2: Measured from the lowest anticipated true clean bed level.

5.1.4 Field bending

In accordance with section 7.10 of IGEM/TD/1 pipes may be bent cold in the field. Bending shall be performed, without wrinkling, on a suitable machine.

An internal mandrel should be used, particularly for larger diameters.

In the finished bend, the angular deflection measured along any axial length equal to the diameter of the pipe shall not exceed 1.5° .

Note: This corresponds to the minimum ratio of radius (measured from the inside of the bend) to diameter of the pipe being in the order of 40 to 1.

Each pipe that is bent shall incorporate a minimum length of 1.25 m of straight pipe before and after the bent portion.

A bend shall not be made within two pipe diameters of a girth weld, which has already been made. When longitudinally welded pipes are used, the weld shall be at about 45° to the plane of the bend and longitudinal welds of consecutive cold bends shall not coincide.

Before any bend is incorporated in the pipeline, it shall be tested for ovality with a gauging plate of diameter not less than 95% of the nominal bore, subject to a minimum clearance of 25 mm. Coating and wrapping applied before bending shall be examined and any damage made good.

5.1.5 Protection of existing services

Due to the anticipated number and location of existing services which will necessitate crossing by the new pipeline, some temporary and permanent service protection work will be required to allow the necessary proposed construction works to be carried out. An assessment will need to be performed as part of the Detailed Design phase.

5.1.6 Welding

All welded joints shall be made and inspected in accordance with the BS 4515-1:2009 'Specification for welding of steel pipelines on land and offshore. Carbon and carbon manganese steel pipelines'

As the pipeline from the NG minimum offtake to the gas compound is essentially an extension of the National Transmission System the detail design should consider the requirements of NG Engineering Specification T/SP/P/2 'Technical Specification for Welding of Land Pipelines Designed to Operate at Pressures Greater than 7 bar'.

All mainline mechanised welds shall have 100% automatic ultrasonic testing; all others, including tie-ins will have 100% radiographic inspection.

5.1.7 Pipeline hydrotesting / Dewatering

The pipeline will be tested to demonstrate fitness for purpose in compliance with IGEM/TD/1 and current legislation. This will take the form of hydrostatic pressure testing which must be fully documented. Witnessed records detailing all hydrostatic tests (inc. test pressure charts, pig and pig run register, fill and pressurisation records, discharge records, durations, test pressure calculations, etc.) shall be collated for permanent retention as part of the handover documentation.

Before testing, the pipeline will be cleaned and internally checked using cleaning and gauging pigs driven by compressed air.

As discussed in section 3.1 it is assumed at this stage that the entire route will be designed to a design factor of 0.3 and therefore in accordance with Table 10 of IGEM/TD/1 the pipeline should be hydrotested to $1.5 \times MOP = 1.5 \times 70$ barg = <u>105 barg</u>.

The test medium will be clean fresh water. Approximately 200m³ of water will be required for the test.

On completion of a hydrotest, the pipeline will be de-pressurised under controlled conditions and the water discharged accordingly. Any water abstraction or discharge will require an Abstraction Licence from the appropriate statutory authority which may contain restrictions on extraction flow rates, return water quality, etc. Subsequent to the section being drained of water, the section will be swabbed to remove residual water by passing through specially designed 'pigs' propelled by compressed air. All pigs used, and pig run details shall be noted in the pig run register.

It is highly important that all traces of water are removed to ensure dry gas is transported on commissioning. This will be achieved by dry air drying or vacuum drying or similar as described in IGEM/TD/1, section 9.4 'Drying, Purging and Gassing Up'.

5.1.8 Commissioning

Commissioning of all new equipment shall be carried out in accordance with an approved procedure. Purge rates for commissioning of the pipeline and plant will have to be agreed with NG and follow the requirements of IGE/SR/22 – 'Purging Operations for Fuel Gases in Transmission, Distribution and Storage'. All commissioning operations involving live gas will be under the control of NG personnel using a non-routine operation procedure produced by NG. Statera and/or their MWC will provide assistance to NG as required.

5.2 Records and documentation

All record information, documentation, certification of materials and components and any other appropriate information that can be used as a permanent record of 'fitness for purpose' (see note 1), shall be preserved as required by relevant standards, specifications, or local or statutory requirements. All plant, equipment and bulk material items shall have sufficient documentation to provide 'full' traceability. For example, Regulation 13 of the Pressure Systems Regulations 'keeping of records etc.', details specific requirements for the examination of records.

For pressure systems which will be subject to schemes of examination, there is a requirement to retain sufficient information concerning the design, construction, examination, operation and maintenance of an installation.

Records shall typically include:

- a. fully detailed "as built" drawings
- b. welding and fabrication records
- c. full material certification
- d. equipment data sheets
- e. selected suppliers returns e.g. purchase orders
- f. inspection reports
- g. weld acceptance certificates
- h. weld procedures
- i. letters of conformity
- j. design calculations
- k. pressure test records
- I. functional test records

All items of plant, equipment and bulk materials items shall be indelibly marked with a unique identification number and be recorded in a suitable register with the suppliers' order numbers to ensure 'full' traceability.

Note 1: The definition of 'fitness for purpose' of a gas supply system is that an item of equipment or combination of items of equipment, which together comprise an installation or pipeline system, has been designed, constructed, tested and commissioned to appropriate legislation, standards and procedures relative to the operating conditions. Continued 'fitness for purpose' in service requires that an operating philosophy, maintenance policy, repair procedure, modification procedure and revalidation schedules are established and maintained which will demonstrate that the pipeline system or installation is suitable for operation within the original or revised design criteria.

APPENDIX A – REFERENCE DOCUMENTS

- E-18110200-M-0200-001 Overall Route Plan 300 Dia. Pipeline
- E-18110200-M-0200-002 Pipeline Alignment Drawing 300 Dia. Pipeline Sheet 1 of 3
- E-18110200-M-0200-003 Pipeline Alignment Drawing 300 Dia. Pipeline Sheet 2 of 3
- E-18110200-M-0200-004 Pipeline Alignment Drawing 300 Dia. Pipeline Sheet 3 of 3
- E-18110200-C-0209-001 General Arrangement Typical Crossing Ditch or Stream
- E-18110200-C-0209-002 General Arrangement Typical Crossing Minor Road and Track
- E-18110200-C-0209-003 General Arrangement Typical Pipeline Right of Way
- E-18110200-M-0300-001 Wall Thickness Calculation Proximity Pipe
- E-18110200-M-0300-002 Wall Thickness Calculation Line Pipe

FIGURE 2: MAJOR DITCH OR STREAM CROSSING

COPYRIGHT TECHNICA LTD. THIS DOCUMENT AND THE INFORMATION CONTAINED UPON IT REMAINS THE INTELLECTUAL PROPERTY OF TECHNICA LTD. ANY CHANGES OR COPYING OF THIS DOCUMENT CAN ONLY BE CARRIED OUT WITH THE WRITTEN CONSENT OF THE OWNER

	1)	 All Othe	DIMENSIONS IN MILLIMET ERWISE STATED.	ERS U	NLES	S
	2)	MININ FROM MININ TO N REQU	MUM DEPTH OF COVER ⁻ M TRUE CLEAN BOTTOM MUM DEPTH MAY BE INC WATER AUTHORITY OPERA JIREMENTS.	TO BE OF DIT REASEI TING	1.7m CH.) DU	י E
	3)	BANK CONI EROS APPL AUTH THE	KS TO BE REINSTATED T DITION, INCLUDING PREVI SION CONTROL METHOD, LICABLE, WHERE REQUIRI HORITY HAVING JURISDICT CROSSING.	O FORI ENTATIV AS ED BY FION O ^V	MER E /ER	
	4)	BACH OR S COAT	KFILL MATERIAL TO CONT STONE THAT MIGHT DAMA FING WITHIN 300mm OF	AIN NO GE TH THE P	RO E IPE.	СК
	5)	BUSH MATT THE BACH	H, ROOTS AND OTHER V ER THAT HAS BEEN CLE R.O.W. IS NOT TO BE U (FILL MATERIAL.	EGETAT EARED JSED A	ON FROM S	1
	6)	SLOF THE CONS THE SUIT	PE OF THE TRENCH AND TOP TO SUIT CONTRACT STRUCTION METHOD. SAF TRENCH SHALL BE ADJI ACTUAL LOCAL SOIL CO	WIDTH OR'S E ANG JSTED NDITIOI	AT LE O TO N.	F
	7)	THE UNIF OBJE OR	BOTTOM OF THE TRENC ORMLY GRADED AND FRI ECTS WHICH MIGHT DAMA THE COATING.	H SHAI Ee FRC Age Thi	L BI M E PIF	E E
	8)	IF P TREN SAFE	ERSONNEL MUST ENTER NCH, CONTRACTOR SHALI WORKING TRENCH DETA NT APPROVAL FOR CONS	THE P PROV AILS TO	IPE IDE ON	
	9)	WARI MATE BURI WARI BLAC BURI PIPE	NING TAPE SHALL BE OF ERIAL SUITABLE FOR THE ED GROUND CONDITIONS NING TEXT PRINTED CK-OVER-YELLOW, STATII ED HIGH PRESSURE NAT LINE".	F PVC REQU WITH NG: "D/ TURAL (RED ANGE GAS	R:
	10)) WARI CROS EITHI	NING SIGN INDICATING G SSING SHALL BE INSTALI ER SIDE OF THE DITCH/	AS PIPI _ED ON STREAN	ELINE 1.	Ē
	11)) CATH INST/ BE S	ADDIC PROTECTION DESIGNALLATION AT EACH CROS	SN AND SING S APPROV	HALL AL	-
		PRIO	R TO CONSTRUCTION.			
D BENDS						
JVER	A 2 REV	27.11.18 DATE	FOR REVIEW DESCRIPTION	BT BY	SS СНК	DB APP
			STATERA EN	ERGY	r	
	Т	ECł	HNICA T. +4 W. w	RY TREE BU E ROAD No. BY LINCOLNSHIR 2TX D KINGDOM 4 (0)1472 ww.technicalt	SINESS I 5 E 268007 d.com	PARK
	DRAWN DATE CLIEN	N BY	B. TURNER PROJECT N 27.11.18 CLIENT REF STATERA EN	o 18 - ERGY	31102	00
	TITLE GE TV	ENER/ PICAI	AL ARRANGEMENT			
	DI		OR STREAM		REVIS	ION
	N	TS	E-18110200-C-0209-	-001	A	A1 BORDER)

FIGURE 1: MINOR ROAD AND TRACK CROSSING

D COPYRIGHT ECHNICA LTD. THIS DOCUMENT AND THE INFORMATION CONTAINED UPON IT REMAINS THE INTELLECTUAL PROPERTY OF TECHNICA LTD. ANY CHANGES OR COPYING OF THIS DOCUMENT CAN ONLY BE CARRIED OUT WITH THE WRITTEN CONSENT OF THE OWNER

	<u>NOTI</u>	<u>ES</u>						
	1)	all Othe	DIMENSIONS ERWISE STATE	IN MILL D.	IMETER	1U 2	NLES	S
	2)	PIPE BE, STRI LATE SPEC CON DOC PART AUTH	LINE CONSTR AS A MINIMU CTLY IN COM ST REVISION CIFICATION FC STRUCTION, F JMENTS AND TES, LOCAL A HORITIES LAW	UCTION M, IMPL PLIANCE OF THE R THE ELEVAN ALL CC ND/OR AND R	ACTIVIT EMENTI WITH PROJ PIPELIN T CON NCERN NATIO EGULAT	TIES ED THE ECT NE TRAC IED NAL TONS	SHA TOR THIRI 5.	LL D
	3)	CON RELE PERI	TRACTOR SHA VANT ROAD / MISSION PRIO	LL OBTA AUTHORI R TO C	AIN CLI TY OR ONSTRI		AND NER DN.)
	4)	CRO PERI SHO DEGI	SSING TO BE PENDICULAR A ULD NOT BE REES.	AS CLO AS POSS LESS T	DSE TO SIBLE A HAN 3) AND O		
	5)	CON REIN CON RELE	TRACTOR SHA STATE ROAD DITIONS AND IVANT ROAD (LL REP. TO PRE TO THE DWNER/	AIR AN -CONS ACCEI AUTHO	D STRU PTAN RITY.	CTIOI CE (N OF
	6)	CON SIZE UTILI PRIC	TRACTOR SHA OF ALL UNE TIES, SERVICE R TO CONSTI	LL VERI DERGROU ES AND, RUCTION	FY DEF JND PI /OR ST I.	PTH PELII IRUC	AND NES, TURE	ËS
	7)	CON BENI	TRACTOR SHA DS REQUIRED	LL DETE AT SIT	ERMINE E.	ALL		
	8)	CON CALC PRO CON PRIC	TRACTOR SHA CULATIONS AN CEDURES, BA DITIONS, TO (R TO CONST	LL SUB D CONS SED ON CLIENT RUCTION	MIT DE STRUCT ACTUA FOR AF I.	TAILE ION AL S PPRC	ED ITE VAL	
	9)	SAFE BY (ACC) PERI	TRAFFIC FLO CONTRACTOR ORDANCE WIT MIT REQUIREM	DW SHA AT ALL H ROAD IENTS.	LL BE TIMES AUTHO	MAIN AND DRITY	NTAIN IN	IED
	10) MINII SHO' ROAI REQI	MUM DEPTH (WN AND COM) AUTHORITY JIREMENT.	OF COVI PLY WIT OR OW	ER SHA TH REL NER	ALL (EVAN	BE A IT	\S
	11) FOR DETA E—1	TYPICAL TRE NLS, REFER T 8110200-C-	NCH AN O DRAV 0209-0	ID BAC VING 03.	KFILI	_	
	12) WAR CRO EITH	NING SIGN IN SSING SHALL ER SIDE OF	DICATINO BE INS THE RO	G GAS TALLED AD.	PIPE ON	ELINE	Ξ
	13) CATH INST BE S PRIO	IODIC PROTEC ALLATION AT SUBMITTED FC R TO CONSTI	CTION D EACH C R CLIEI RUCTION	ESIGN ROSSIN NT APF I.	AND IG S PROV	HALL AL	-
NF PIPF								
	A	28.11.18	FOR REVIEW			BT	ss	DB
	REV	DATE	DESC	RIPTION		BY	СНК	APP
			STAT	era I	Ener	GY	r	
	T	ECI	HNICA		CHERRY TH ESTATE RO GRIMSBY N E LINCO DN31 2TX UNITED KIN T. +44 (O W. www.teo	REE BUS AD No.5 NGDOM)1472 2 chnicalto	268007 1.com	PARK
	DRAW DATE	'N BY	B. TURNER 28.11.18	PROJE CLIENT	CT No REF	18	31102	00
	CLIEN TITLE G	IT ENER/ YPICAI	AL ARRANGEI CROSSING	STATERA MENT	ENERG	Y		
	M sc	IINOR ALE	ROAD AND	TRACK	R		REVIS	ION
	N	TS	E-18110200)-C-02	209-00)2	A	

FIGURE 2: PERMANENT GAS PIPELINE RIGHT-OF-WAY (R.O.W.)

	NOTES
	1) ALL DIMENSIONS IN MILLIMETERS UNLESS
	2) SLOPE OF THE TRENCH AND WIDTH AT THE TOP MAY VARY TO SUIT CONTRACTOR'S CONSTRUCTION METHOD. SAFE ANGLE OF THE TRENCH WALLS SHALL BE MAINTAINED AND ADJUSTED TO SUIT LOCAL SOIL CONDITIONS
	3) SAFE DISTANCE SHALL BE MAINTAINED TO
	 AVOID COLLAPSE OF TRENCH. 4) IN CASE OF POPULATED BUILDINGS AND/OR PUBLIC TRANSPORTATION INFRASTRUCTURES COMING ALONG OR ADJACENT TO THE EDGE OF GAS PIPELINE
FENCE OF TEMPORA STRUCTION RO	ADJACENT TO THE EDGE OF GAS PIPELINE RIGHT-OF-WAY, SAFE SEPARATION DISTANCE/MEASURES BETWEEN PIPELINE AND ANY POPULATED BUILDINGS AND/OR PUBLIC TRANSPORTATION INFRASTRUCTURES SHALL BE VERIFIED AND INCREASED TO AN ACCEPTABLE LEVEL, BASED ON ESTABLISHED RISK ASSESSMENT METHODOLOGY AND IN COMPLIANCE WITH RELEVANT LOCAL/NATIONAL LAWS AND REGULATIONS.
	5) IF SPACE IS LIMITED, SPOILS ARE TO BE REMOVED TO AN APPROVED AREA BY THE CONTRACTOR.
ED SPOIL RIALS	
E 5	
ATERIAL	
DMPACTED LAYER	A29.11.18FOR REVIEWBTSSDBREVDATEDESCRIPTIONBYCHKAPP
ERIAL	STATERA ENERGY
	CHERRY TREE BUSINESS PARK ESTATE ROAD No.5
	TECHNICA N E LINCOLNSHIRE DN31 2TX UNITED KINGDOM
	T. +44 (0)1472 268007 W. www.technicaltd.com DRAWN BY B. TURNER PROJECT No 18110200
I	DATE 29.11.18 CLIENT REF CLIENT STATERA ENERGY TITLE
	GENERAL ARRANGEMENT TYPICAL PIPELINE RIGHT-OF-WAY
	SCALE DRAWING NUMBER REVISION
	NTS E-18110200-C-0209-003 A
	+ Boild

REV	DATE	DESCRIPTION	BY	CHP	APP	2		Technica Ltd Cherry Tree Business Park Estate Road No. 5			PROJECT:	THURROCK POWER - PIPELINE & PRI CONCEI	PTUAL DESIGN	
A	30/11/18	FOR REVIEW	BT	RW	DB							WALL THICKNESS CALCULATION		
							STATERA LIVERGI			 Grimsby N.E. Lincs DN31 2TX 	Fel: 01472 268007 Fax: 01472 268006	TITLE:	HEAVY WALL (PROXIMITY) PIPE	
													TO IGEN/TD/T	-
						No	otes	DRAWN BY	B. TURNER	PROJECT No.	18110200	SIZE	DOCUMENT NUMBER	REVISION
								DATE	30 NOV 2018	CLIENT REF.		A3	E 18110200 M 0300 001	^
								CLIENT	STATERA ENERGY		AJ	E-18110200-WI-0300-001 A	~	

Wall Thickness Calculation to TD1 t=PD(20fs)⁻¹

- P Design pressure at relevant design temperature (bar)
- D OD of pipe (mm)
- s Specified minimum yield strength (Nmm⁻²)
- f Maximum design factor
- t Design wall thickness of pipe, incl. manufacturer's under tolerance (mm)

Manufacturer's under thickness tolerance 12.5%

Pipe Material

Selected pipe wall thickness Design Factor (rearranging calculation for 'f')

12.7 mm 0.25

API 5L X52

70

323.9

360

0.3

11.81

12"

Type S area

	IGEM/TD/1 TABLE 5								
Minimum nominal wall thickness of linepipe for handling p									
Outside diame	ter of pipe (mm)	Nominal wall							
Exceeding	Not exceeding	thickness (mm)							
0	168.3	4.7							
168.3	457	6.3							
457	610	7.9							
610	914	9.5							
914	1067	11.9							
1067	1219	12.5							

	Area Types	Design Factor (f)
R	Rural areas with a population density not exceeding 2.5 persons per hectre	0.72
S	Areas which may be extensively developed with residential properties, schools, shops etc.	0.3

IGEM/TD/1 TABLE 4 (extract)					
API 5L material g	rades and SMYS				
Grade	SMYS (Nmm ⁻²)				
В	245				
X42	290				
X46	320				
X52	360				
X56	390				
X60	415				
X65	450				
X70	485				
X80	555				

REV	DATE	DESCRIPTION	BY	СНК	APP	-		Technica Ltd			PROJECT:	THURROCK POWER - PIPELINE & PRI CONCEPTUAL DES		
A	30/11/18	FOR REVIEW	BT	RW	DB			тесы						
						//	es				Grimsby N.E. Lincs Tel: 01472 268007 DN31 2TX Fax: 01472 268006			
									-				TO IGEM/TD/T	
						Notes			B. TURNER	PROJECT No.	18110200	SIZE	DOCUMENT NUMBER	REVISION
									30 NOV 2018	CLIENT REF.		A 2	E 18110200 M 0300 002	^
								CLIENT		STATERA ENERGY		AJ	E-18110200-WI-0300-002 A	~

Wall Thickness Calculation to TD1 t=PD(20fs)⁻¹

t

- P Design pressure at relevant design temperature (bar)
- D OD of pipe (mm)
- s Specified minimum yield strength (Nmm⁻²)
- f Maximum design factor
 - Design wall thickness of pipe, incl. manufacturer's under tolerance (mm)

under **4.92**

API 5L X52

70

323.9

360

0.72

12"

Type R area

Manufacturer's under thickness tolerance 12.5%

Pipe Material

Selected pipe wall thickness Design Factor (rearranging calculation for 'f')

Minimum nominal wall thickness of linepipe for handling purposes							
Outside diameter of pipe (mm) Nominal v							
Exceeding	Not exceeding	thickness (mm)					
0	168.3	4.7					
168.3	457	6.3					
457	610	7.9					
610	914	9.5					
914	1067	11.9					
1067	1219	12.5					

	Design Factor (f)	
R	Rural areas with a population density not exceeding 2.5 persons per hectre	0.72
S	Areas which may be extensively developed with residential properties, schools, shops etc.	0.3

IGEM/TD/1 TABLE 4 (extract)					
API 5L material grades and SMYS					
Grade	SMYS (Nmm ⁻²)				
В	245				
X42	290				
X46	320				
X52	360				
X56	390				
X60	415				
X65	450				
X70	485				
X80	555				